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A,B,C,D,E

R(x)

[

NOTATION

strength of a gust doublet.

regions defined by Fig. 9.

speed of sound in the undisturbed fluid.
source strength.

bending moment coefficient.

1ift (normel force) coefficient.

moment coefficient.

pressure coefficient.

generalized force coefficient.

an arbitrary function, determined so as to satisfy a boundary
condition.

unit step function, =1 if 2z > O and zero otherwise.
modified Bessel function of the first kind, order n .
N-1 .

modified Bessel function of the second kind, order n .
length of body, or Laplace transform.

Mach number, Ufa .

r-intercept of straight line in x-r plane, or a point on the
body surface.

pressure, or transform variable corresponding to x .
equation of the body surface.

radial coordinate.



r = spherical radius, = re4xe

S = base area of body.

s = transform variable corresponding to t or «r .
Tm =t -t .

t = time.

tm = the mth time at which a gust doublet starts.

§) = upstream velocity.

u = axial velocity or perturbation.

\) = strength of an elementary point source.

v = radial component of velccity.

Vo = velocity of the side gust.

W = downwash.

W = tangential (angular) component of velocity.

Xn =x - & .

X = axial coordinate, measured from nose of body.
a = MR' .

B - A1 .

r = Gamma function.

Y = R’

8 = Dirac delta (unit impulse) function, or slendermess ratio.
8 = angular coordinate.

g = axial coordinate, or location of a point on the x-axis.
54 = location of the n*P gust doublet on the x-axis.
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P = air density.
T = time in units of length, = Ut

§:¢:V = velocity potentials, whose negative gradient yields a corresponding
velocity vector.

Subscrivots

a = axial flow.

c = crossflow.

d = doublet.

g = gust.

k = location on x-axis of a steady source or doublet distribution.
m = time at which a gust doublet starts.

n = location on x-axis of gust doublet.

o = upstream (undisturbed) condition.

r = derivative with respect to r .

S = source

st = steady state.

t = derivative with respect to t .

X = derivative with respect to x .

0 = derivative with respect to 6 .

T = derivative with respect to r .

Miscellaneous

(prime) = derivative with respect to its independent variable or argument.

(bar) —— = Laplace transform.

- vii -



ABSTRACT
271720

A theory for predicting[éérodynamic forces on cone-cylinder bodies
encountering a step side gust is developed. The theory satisfies the full
linearized potential equation, and satisfies the exact boundary condition when
steady-state flow has been achieved. This boundary condition is satisfied in
an approximate sense in the transient region of flow.

The theory is based on an elementary "gust doublet" solution. 1In
order to arrive at the best fundamental solution for the present purpose, the
methods of Laplace transforms, superposition of axial and/or surface singular-
ities, and extensions of older theories are studied. A superposition of basic
axial singularities is chosen as the best approach.

The gust doublet solution yields the solution of Tsien when steady-
state conditions occur. For this reason, the Karman-Moore technique is rela-
tively simple to apply when complicated body shapes are to be considered.
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I. INTRODUCTION

Previous work in the field of unsteady or transient aerodynamic load-
ing of axisymmetric bodies involves many assumptions and simplifications.
First, it assumes that the flow field can be described by a potential function.
The potential equation is then simplified by neglecting all nonlinear terms,
implying that disturbances are small. Furthermore, certain terms in the lin-
earized equation are normally dropped by assuming the body to be slender and/or
the reduced frequency to be very large or very small. Also, an approximate
boundary condition is normally used, again implying that the body is slender.

The purpose of the present work is to develop a more accurate the-
ory for the indicial aerodynamic forces on a cone-cylinder body encountering a
side gust. This theory is based on the full linearized potential equation,
but makes use of the exact boundary condition.

II. SUMMARY

A theory for predicting aerodynamic forces on cone-cylinder bodies
encountering a step side gust is developed. The theory satisfies the full
linearized potential equation, and satisfies the exact boundary condition when
steady-state flow has been achieved. This boundary condition is satisfied in
an approximate sense in the transient region of flow.

The theory is based on an elementary "gust doublet” solution. In
order to arrive at the best fundamental solution for the present purpose, the
methods of Laplace transforms, superposition of axial and/or surface singular-
ities, and extensions of older theories are studied. A superposition of basic
axial singularities is chosen as the best approach.

The gust doublet solution yields the solution of Tsien when steady-
state conditions occur. For this reason, the Karman-Moore technique is rela-
tively simple to apply when complicated body shapes are to be considered.

The linearized lift coefficient for a cone is obtained and compared
with that of Miles. The most significant differences are that the gust doub-
let (1) gives more accurate steady-state results; (2) has no overshoot of the
growth of 1ift curve; and (3) depends on both M and R' , not just the prod-
uct MR

The effect of quadratic terms on the aerodynamic forces is considered.
Preliminary results indicate that all such terms must be retained. The non-
linear terms need additional development to facilitate their application. The
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gust doublet theory requires additional work to establish more conclusively its
accuracy and limits of applicability.

The analysis of accuracy is handicapped by the lack of an exact
solution for a cone penetrating a step gust. A numerical technique of obtain-
ing such a solution, making use of the gust doublet, is outlined. This tech-
nique has the potential of supplying the desired exact solutions to be used as
a basis of comparison.

The gust doublet theory provides the unit step kernel for the Duhamel
integral method of calculating responses. The unit impulse kernel, often more
convenient, appears to be obtainable from the existing theory by the use of
numerical or analytical methods.

ITI. GENERAL FORMUIATION OF THE PROBLEM

The physical problem to be solved can be stated as follows: Find
the transient flow field, pressure, etc., on a cone-cylinder body of revolu-
tion encountering a side gust while traveling at supersonic speed. Using
linearized potential theory, the problem may be stated mathematically as
follows:

Find the solution to the linearized potential equation

1 2 2 2
3, + §r+r—2¢ee-s<§xx—2M§xT-Méﬁ=0 (3.1)

HH

with the boundary conditions

1
3
cos @ T

A H(T-x) at T = » , and

L1}

%y - R'®, = O at surface of the body.

We will write the solution as



Where
¥Y=-vrcos® H(T-x) .

This has a physical interpretation. The potential, & , corresponds to a gust
of wind encountering a vehicle with no side displacement. The potential, ¢ ,
however, gives the impression of & missile suddenly moving sideways into still
air. (Of course, there is still axial flow in both cases. We are not con-
cerned with this here.)

Now, ¥ satisfies Eq. (3.1) and likewise, § must satisfy (3.1). The
boundary conditions become

g.=0 at r=o (3.2)

¢r - R'¢x = v cos 8 H(T-x) at the body, r = R(x) . (3.3)

The right hand side of (3.3) is commonly termed the downwash. Most authors
start with the conditions (3.2) and (3.3) or approximations of these. It is
important to realize that although Eq. (3.3) indicates a discontinuity in the
flow along the body, the complete solution, including Y , has no such discon-
tinuity at the body.

An additional comment will be made at this point. The velocity po-
tential is defined here as the negative of the gradient of the velocity vector.
All authors are not in agreement as to whether the positive or negative sign
will be used. As long as it is clear which is used in a given article, however,
no confusion need arise.

IV. A BRIEF REVIEW OF THE LITERATURE

This section reviews those works which most affected the present
report; it is not an exhaustive survey, however. Many of the papers mentioned
here contain excellent reviews of other related studies.

This report is concerned with the indicial aerodynamic theory for
bodies of revolution. An excellent discussion concerning indicial aerodynamics
for wings has been written by Lomax [28]. Although the basic approaches set
forth these are applicable to the body of revolution, the details are quite
different and, in general, more complex in the present case.

* Numbers in brackets refer to the bibliography.
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It should be realized that the considerable amount of work on non-
linear theory is not mentioned here. The assumptions of linearized potential
flow, nonexistence of shock waves, etc., imply that the similarity parameter,
Bd , is small (less than one in any case). The Saturn V has a nose angle of
33 degrees, requiring that the Mach number be less than about 1.8 for success-
ful application of potential theory. Also, a detached shock wave is produced
by this cone when M < 1.6 , in vwhich case this work would not be accurate,
at least near the nose.

The work on steady flow over axially symmetric bodies will be dis-
cussed first, since many of the techniques developed there are extendable to
the nonsteady problems. The work of Theodor von Karman and Norton B. Moore [L],
known in short as the Karman-Moore theory, serves as a good place to start.
They considered axial, steady flow over a pointed body, and obtained a source-
type solution. They then developed a numerical technique of summing, or
superposing such solutions to match arbitrary body shpaes. The crossflow
problem was studied later in the same manner by Tsien [2]. This is discussed
in detail in Appendix A.

The above formulations can be looked upon as first approximations of
analytic solutions for arbitrary slender bodies [3] , rather than as numerical
techniques. This approach was extended to higher order terms by Lighthill [43,
Ward [5] and Broderick [6] . A serious question concerning the validity of this
technique when the body has a discontinuous slope was raised by Lighthill [7]
He then developed a scheme to handle this type of situation, by means of
Stieltjes integrals. Adams and Sears [8] use an expansion technique on the
Laplace or Fourier transformed solution which is applicable to not so slender
bodies. Finally, Ta Li [3] considers the coupling effect between axial and
crossflow.

In the field of nonsteady problems, the case of oscillatory motions
offers the greatest abundance of work. Platzer E}Q] presents a generalization
of the Karman-Moore technique which is applied to slowly oscillating bodies.
Dorrance [}13 developed an apalytic solution which serves as an approximation
for slender bodies and low-frequency oscillations. This was extended to higher
order terms in the reduced frequency by Lansing E&ﬂ, and a somewhat more gen-
eral approach was taken by Bond and Packard [;5] (see Appendix C). This was
still limited to slender bodies, however. Zartarian and Ashley [14] extended
the Adams-Sears technique to include the oscillatory case, and Platzer [}5}
showed that their results can be obtained by means of the Dorrance approsach.
Also, there is the work of a similar nature by Dzygadlo [}6] who considers a
body whose surface undergoes small vibrations of a rather general nature.

Not so much work has been done, however, with the indicial case.
Miles [11] considers the transient motion of a body of revolution, assuming the
body to be very slender and using a high-frequency approximation. This idea
was applied to cone-cylinder bodies by Yates [;S,lQ] and Blackburn [?Q]- These
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latter studies all were concerned with both unit step and unit impulse re-
sponses. Also, Strang [?i] investigated some basic transient solutions of the
linearized potential equation. See Section VI for a discussion of this.

In order to develop a more accurate aerodynamic theory for the
response to gust loading, there seems to be basically two approaches open.
One is the Adams-Sears not so slender body theory; the other being a generali-
zation of the Karman~Moore technique.

The slender body theory of Miles could conceivably be used as a
starting point for an Adams-Sears iteration. The prime objection here is the
discontinuous body slope which occurs in the Saturn V, and indeed, in most
present day missiles. The only satisfactory way to handle this would seem to
be along the lines of lighthill.

The Adams-Sears method might also be applied to the solution of Bond
and Packard, although the same arguments again apply. Here it is not clear
how to relax the author's approximation for the Bessel function which is made.

An extension of the Karman-Moore theory was chosen as being the
better approach. A basic solution with which to work was investigated first
by means of the Laplace transform (Section V), and then by a more direct
physical approach (Sections VI and VII). An approximetion of the solution was
found by means of a modification of the paper of Bond and Packard (Appendix C).
A brief study of the possibility of assembling nonaxial sources was also made
(Appendix B).

V. DERIVATION OF A CLASS OF SOLUTIONS OF EQUATION (3.1)

It appears that an exact solution of (3.1) which satisfies (3.2) and
(3.3) will not be found. Various authors have found approximate solutions by
making slender body assumptions of various types, or, assuming very high-
frequency response, so that axial derivatives in (3.1) may be neglected as
compared to time derivatives.

In the present work, we will attempt to use the Karman-Moore tech-
nique of superposing solutions of (3.1) in such a way as to satisfy (3.3) at
a finite number of points on the body surface. In this section, classes of
exact solutions of Eq. (3.1) will be found. They demonstrate the type of be-
havior to be expected of this equation and give mathematical and physical in-
sight into the problem.



Let

[+] o
-PX -sT
W(r,p,5) = f e fe B(r,x,7) ax ar
0 0

That is, we take Laplace transforms on x and T . In addition, we have
assumed a cosine dependence on 8 which is not written, for brevity. Then,

Eq. (3.1) becomes

Yop * =y -(L * Bep?+2»42ps+M2s2)¢ =0 . (5.1)
r r2

A general solution of (5.1) is

‘i’(r,P,S) = F(P; S)KIG ,\/—ﬁepz"'mzps"'Mese ) ’ (5'2)

K. being the modified Bessel function of the second kind, and F an
arbitrary function of p and s .

In order to make the required inversions, assume that one can write

Af(s) (5.3)
A/ BeD=+2Meps+Mes®

F(p,s) =

where A is a constant. The x-inversion can be performed by letting
M
p = — (§-Ms)
32

Thus,



Blx,r,s) = Af(s)e G2

2 MxE M
M sx . = r_,\{ 2_.2
_f°+l°°es2 Kl@ gs)

- ag (5.4)
2nip c-im 2252
Now, the inverse can be found as @2]
_ Masx
2
B(x,r,s) = Af(s)e B” gimn [Mﬁ xz-Berg] (5.5)
Mrs 52
where we have used [233 or [24]
I, ,.(2) =\I 2_ sinh (z)
1/2 nZ
Now, f(s) 1is an arbitrary function of s . Normally the boundary

conditions are used to determine such functions. However, our interest at
present is only to find a class of solutions of (3.1) which may be used by
means of superposition in the Karman-Moore sense. Since an inversion in time
is still required, we will choose f(s) in such a way that the inversion is

defined, and may be carried out. This can be done by choosing

f(s) =1, nz20 .

s
Now,
0, T<k
- -1
T (i DR B 0 3 i , T2k
S I'(m)

By writing the sinh in (5.5) in terms of exponentials, we have

(5.6)



5 A 1 - g§'(@x- \/xE-Bgre)s - %g‘(Mx+ \/;EjEE;é)s
T ey em—— e -e

aMr _n+l (5.7)

The following facts are noted at this point. To obtain a real
(physical) solution, we require that

x2 >Ber2

That is, the body must lie within the Mach cone attached to the nose of the
body. Furthermore, it is obvious that in supersonic flow,

Mx 2 w/xg-Bera

Hence, both exponents are negative and the inverse exists. Taking
the inverse of (5.7) using (5.6) yields

[T - M—a (x- A/<B-p2c2 an
B

I(n+l)

¢(x,r,‘r) = 2;21‘

i - ¥ G- F)]

['r - b—% (Mx+ A/x2-per2 )]n
) : T(n+1) H[T ) Pé% (e /o8-8 >] (5-8)

where H is the unit step function.

Equation (5.8) then represents a class of solutions of (3.1). Be-
fore discussing these solutions, it may be mentioned that any sum of such solu-
tions is also a solution. 1In fact, it may be shown by direct substitution
that a more general solution is



o+ (o -8 o AT -, o 7]

- g[T - Qé_e_(Mx+ 4/x2_52r2)]ﬂ[., N bﬁ% (Mx+ ,,/xz_Bzre)] (5.9)

where g(Z) is an arbitrary function of 2 .

The solutions presented in (5.8) and (5.9) are in some sense dis-
continuous. That is, the form of the solution is different in different re-
gions of space. First of all, of course, it is required that x > Br . The
locus of points where the arguments of the step functions vanish determine the
limits of other regions. Figure 1 shows these regions in the x-r plane.*

F g
Aox= 2 T X = fr //—-c1rcle (x-7)° + 2 - jg
E—T{ /_\
/ \\
,,/’}g/////?ﬁ X

Fig. 1 - Regions of Influence Determined by Egq. (5.8) or (5.9)

* Although the problem is three-dimensional, it is easier to speak in terms of
geometry in a plane. The line and circle shown are, in reality, a cone and
a sphere. We shall continue to speak in terms of the x-r plane from
time to time for simplicity.
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The four regions, A, B, f}\, and E each require a different form of
@. For example, using Eq. (5.8) with n =1 gives

For Region E: T < M—;(Mx- 1/,(2-521.2) 1
B

For Region T: Dil.g-(Mx- ‘\ij-Bera) <T< &2_ (Mx+ Vx2-32r2>
B B

¢ =

A
oMy

[‘r - I‘B.fl.a_(Mx- ’\}xz'Bar'2 )] .

) (5.10)

For Region B: T > %(Mm '\jx2.32r2)
B

p= L N[22

g2r

For Region A: x < Br

Thus, for this case, the potential is zero in Region E, is time-de-
Pendent or transient in Region C, and is steady in Region B.

The regions in Fig. 1 also have a direct physical interpretation.
Using the real time, t , the equation of the circle (actually, a sphere) is

(x-Ut)2 + r2 = 222

That is, the center is at the leading edge of the gust front, and
the radius of the sphere corresponds to the distance traveled in time t by
a disturbance propagating at the speed of sound.

- 11 -



The solutions given in (5.8) and (5.9) do not have the r-dependence
which is normally seen in the literature. Another set of solutions can be
easily derived starting with an axial flow problem. In this case, there is no
0 -dependence, and Eq. (5.1) takes the form

Vo + = ¥y - (8%P+2nPpsnsR)y = 0 . (5.11)

A general solution of this is

¥(r,p,s) = F(p,s)Ko(r \/52132+2M2ps+M252> . (5.12)
Then, setting
=M (e-
P 2 (E-Ms)

and assuming that F is independent of p ; i.e.,
F = Af(s) (5.13)

one can invert (S5.12) with respect to p to obtain

2
b(x,r,s) = A_f.gi&__s_ cosh( X '\/x2-82r2) . (5.14)

x2-p2r2 g2

Again, a form of f(s) is selected that will enable a final inver-
sion, namely

f(s) =

L Ly

- 12 -



We then obtain & class of solutions to the axial flow problems.
n-1
[T U (- A8 _Bare)]
52

N A
Pe 2,\/;5:5—2-;5 I(n)
RN -y
[ Ba( :‘ H[T _»_4_5 (e Af22 re)] (5.15)

B

I'(n)

Hl} - %5'(MX' \/;;zgﬁgziﬂ+

-+

It is well known that a solution to the crossflow problem can be

obtained from an axial solution by applying the operator cos © %; . If,

for convenience, we denote

zt=1 - 1‘_"_2.(Mx tA[Bp2r2)
p

and consider a more general form of (5.15), namely,

g, = —A e(zt) (5.16)

then we obtain

¢c - Ar cos © {?Qg(zt) t M‘\/xa-Bzr2 g'(Zté] . (5.17)

[xa 222

It is noted that the same regions of influence occur in the solution
(5.15) as were shown earlier. It should also be pointed out that the well
known elementary steady potentials[?é]can be obtained as special cases of
(5.16) and (5.17). One merely sets

g(zt) = constant

- 13 -



and obtains

s
¢a S . S
'\/x2-52r2
> (5.18)
- ABer cos O .
¢ 3/2
[xe-Bzre:l / J

It appears that a wealth of solutions to Eq. (3.1) can be readily
obtained. The problem, of course, is to satisfy the boundary condition. An-
ticipating a solution embodying the Karman-Moore approach, it is then a matter
of choosing that basic or elementary solution which is most convenient to work
with. It was found that a clue to this choice was available in the work which
follows in Section VI,

VI. TRANSIENT SOURCE AND DOUBLET SOLUTIONS

The paper by W. J. Strang [éi] has a direct bearing on the present
Problem. Some of his work will be reviewed here, together with extensions
made in an attempt to solve the gust problem.

Consider an elementary source of strength V which is located at
the origin of a fixed coordinate system. If this source emits a pulse at
t = 0, then the potential at a point a distance r, = A rex from the
origin may be written as

g = Ya §(at-r,)
4rrg

where § is the Dirac delta function. This says, in effect, that the potential
is attenuated as l/rs and that it propagates with the speed of sound. Now,

if the source were placed at the point x = Ut, r = O rather than at the ori-
gin, then

- 14 -



P = 6(at-p) (6.1)

where

p = r2 + (X-Ut)2 .

Next, consider a point source moving with supersonic speed U . It
sterts at time t = 0 at the position x = Ut , reaching the origin of the
coordinate system at time t . Alternatively, it can be viewed as a source
which is fixed at the origin in a moving coordinate system. In any case, it
is assumed that the source emits at a constant rate. The potential can be
found by superposition of pulses of the form of (6.1), or, in the limit, by
the integral

p = Vaf 2 at;:()t)] it . (6.2)

Ta evaluate this integral, use must be made of the relation

- . n 1
L g(x)8 (£(x)) ax = El &(x,) ;-(—x—Jl (6.3)

where the Xy are the roots of f(x) = 0 . This relation may be easily
proved, but is stated here without proof. Now, the roots of

at - Afr + (x-Ut)2 = 0

are simply

- —2;-[¥xf q/xa—BerQJ » 81 2 to . (6.4)
332

Thus, there are four cases to consider:
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A: x <Br ]

B: t > tl
> (6.5)
/C\: t2 <t < ty
E: t <1, ]
where, in the last three cases, we also require x > Br . These four cases

correspond to the Regions A, B, 6, and E shown in Fig. 1.

Now, consider

P - 1
p(6) | G5 (e ) | 1 5 =4

P - 1
o(t) | = + et | | g - s

F = 1 (6.6)
lap(t) + U(x-Ut) l t =ty

But, at t = t; , p(t;) = at; . Furthermore, t; >0 . Thus,
(6.6) becomes

P o 1
Mx-aﬂgti

a

and, using (6.4),we get simply

1

s Al x2-82r2

F = (6.7)
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Combining (6.2), (6.3), (6.5), and (6.7) the potential function maey be written
as follows:

In Region B: ¢ = y

o «’x2_62r2

In Region C: P = v S (6.8)
Am x2_52r2

In Regions A and E: $=0 .

Equation (6.8) gives the potential due to a point source located at
the origin of a coordinate system which is moving with supersonic speed. It
started emitting at time t = O .

Consider next a point source at x = § in this moving coordinate
system, which starts emitting at time t = €/U . That is, it starts emitting
at a later instant, corresponding to the time required for the coordinate sys-
tem to move a distance § . The various regions of influence of this source
are shown in Fig. 2, superposed on the regions of influence of the potential
given by (6.8).

Fig. 2 - Regions of Influence of Moving Point Source
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The smaller sphere has the equation
(x-Ut)2 + r2 = a2(t-£/U)° (6.9)
vhile the cone has the equation
x=§ + Br

The dotted lines represent the locus of intersections of the spheres and
associated cones, and have the equation

x=Ut - /B

These lines divide Regionﬂa‘into two Regions, C and D.

The point source has the potential @, given by

g, = L in (b)
2 A/ (x€)? - p2r2

g = v in () . (6.10)
4 (x5 )2 - 92r2
¢le =0 in (e)

A distribution of sources along the x-axis, where each source starts
emitting as it crosses a gust front is called a gust source by Strang. It is
this type of distribution that is contemplated here as being a means of find-
ing a solution to the problem of interest. It should be mentioned that ul-
timately a doublet distribution is desired, but this can be easily obtained
from a source distribution.

This gust source will include sources located on the axis between

x=0 and x=Ut . To obtain the total source potential, @  , we will
have to evaluate the integral
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Bo(x,r,t) = f ¢, (x,r;8)f(5) ag (6.11)
0

vhere ¢l is given in (6.10). The function £(f) , which may be chosen
arbitrarily, represents a possible variation of source strength with position.

The integration of (6.11) is facilitated by Fig. 3.

Case B

Case C

Case D

Fig. 3 - Regions of Integration for Eq. (6.11)
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There are three nontrivial cases to tonsider:
Case B: This case corresponds to the situation when the point
P(x,r;t) lies in Region B of Fig. 2. In this case, only those sources which

are on that portion of the axis labeled as b contribute to the total poten-

tial. Furthermore, the point P lies in the corresponding Region b for each
of these sources. Thus,

x-fr
¢s=f Brp(xsTsE)E(E) a5 . (6.12)
0

Case C: Here point P 1lies in Region'@‘and is to the left of the

line x = Ut - r/B - Applying the same sort of reasoning as for Case B,
yields

Ut -M ﬂJ(x-Ut)2+r2 x-Br

B oE(8) a8 + #2(6) & ) (6.13)

0 Ut -M «/ (x-Ut )2+r2

Case D: Now the point P 1lies in Region € but is to the right of
the line x = Ut - r/8 . Ve define this as Region D. Here

Ut -M \/(x-Ut )2+r2

Bo= | Bef(E) & : (6.14)

¢

Of course, it is easily seen that @ is zero outside of these
regions. The gust source considered by Strang corresponds to setting f(§) = 1
(that is, a constant). Carrying out the integrations yields
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. -1
g = V_ cosh x_ for Case B
S BI'

_\
n
i

A ' Case C
4 Br

(™ 1
)4 cosh-l(’_c._ + cosh-l x-Ut+M \ (X-Ut)2+r2] for
Br

(6.15)

-

- af «/ 5,22
g = L { cosn L g_) - cosh™t | x-Ut+M V (x-Ut)%r } | for
r

4 Case D
= pr ]

0 otherwvise.

P

By suitable manipulation, the function ¢s for Cases C and D can
also be written as

<3

47

p rcosh'l - Ax2-p2r2 ) | ypp-l (?:93) e
° Bar T

L (6.16)

Amr

-1 A (——“’"" }
¢s L - cosh (Mx- ’2‘2‘521'2)- sinh 1 (——X'Ut) in D*
T
g r

o’

where C* is that portion of Regions C and D for which

X > Mr

and D* is the rest of Regions C and D (see Fig. 4).
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- C* b

\ Ut
/
i

Fig. 4 - Regions of Influence Showing C* and D¥*

These results agree with those of Strang except for the existence of
the relatively small Region D¥. His results for the pressures are correct,
however. The above expressions for ¢s are continuous everywhere, even
across the divisions between regions. Certain of the derivatives of ¢s are
not continuous, but this is no problem, since the derivatives required are
continuous.

If one considers a point fixed on the body, with x > Br , the
following sequence of events occurs:

1. Initially there is no disturbance and the potential is zero.
The potential remains zero for a time after the source starts emitting, since
the point is in Region E.

2. At time t = -1-2- [Mx— '\le-BQrE] , the potential starts to
ag

change with time. This change continues smoothly, while the spherical region

grows and moves downstream. The point may be considered to pass through

Region D and then C.
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3. At time t = _1.2. I:Mx+ /\ﬂ x2-82r2] the point has reached Region B
aB

and the steady-state value of § has been attained. It will then remain in
Region B with a constant potential.

VII. THE GUST DOUBLET SOLUTION FOR A CONE

To use the Karman-Moore technique, it is desirable to first find the
solution for flow over a cone. The problem of steady crossflow over a cone

was solved by Tsien [2] . We desire a solution of the form of Eq. (6.11) which
agrees with Tsien's solution in Region B.

Since this is a doublet solution, we will need to find

Balx,r,t) = cos 0 & f:¢l(x,rs§>f(§) & . (7.1)

It turns out that the required solution is that for which the unknown function,
£(§) , is simply

£(g) = g2 . (7.2)

Carrying out the integration of (7.1) using (7.2) and the methods of
Section VI, we have
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RS
o)
|

2n r

= Vcos® {32r cosh-l(%‘;) - X '\Ixe-ﬂar2 } in B

=N
ol
'

4n
r '\/ (x-Ut )2+r2
BEr cosh-l [x—Ut+M ‘\/(x-Ut)2+r2J

+

Br

+ B2r cosh™t ("5‘;) - ;i—\/ xz-Bera} in C and D

where the upper sign is to be used in Region C and the lower in D.
derivatives of (7.3) yields, for Region B,

a= VBcos?® 1’(::_)2__1 ]
1'r Br
2 - a 2
v=-Y cos® {cosh l(’-‘-) + 2 X VYa |
2 Br Br Br

while for Regions C and D ,

- 24 -

_V cos © 1 [re(xﬂjt )+ x2(x-Ut ) -Mr® (x-Ut )2"'1'2]

L (7.3)

Taking

(7.4)



u= - Ycos® 1 2UL(x-Ut ) 3+r2(x2+r2)
4nr { [(x-Ut)2+rr‘j3/ [ ]

' [(x Ut)2+r2]l/2 [2(X-Ut) -8 r"‘] 2 \[ 222 }

v=-Ycos?b { (x-Ut) [2x3Ut-(x2+r2)(x2+U2t2)]
bl re [_(x-Ut )arre]s/ 2 '

Cwe BELEU) w2 [X-Ut+M ’\Z(x-Ut)2+r2]
AJ(x-Ut )2+r2 Br

oo () (R)(5) 4 | }

3¢ _ rUV cos @ {r2~x2+2x(x-Ut) . g2 }

ot am [(x-Ut )2..r2] 3/2 A/ (x-Ut )2+ r2

In Eqs. (7.4) and (7.5) the relations

uw= -39
ox
v=-238
ar

have been used.
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The pressure coefficient may be written as

¢t+U¢x] (7.7)

where we have neglected the squared terms.* This gives

oo (T

in Region B, while in C and D,

c = V cos 8 r4+(x-Ut)[xr2+Ut(x-Ut)%l

n r [(x-ut 2er2] 3/2
(x—U'l:)2 -8 2(_2- . |
+ I'[(X-U"c)2+r2]l/2 (Br) ' (7.9)

The solution given in Eqs. (7.3) to (7.9) agrees exactly with Tsien's
solution in Region B, the area of steady-state flow. In addition, the com-
Plete solution together with the derivatives given above is continuous every-

where.

Now, the above solution satisfies the boundary condition (3.2) at
infinity. To satisfy condition (3.3) at the body, one requires that

Vo cos 8 in Region B (7.10)

¢r - R'¢x

¢r - R'¢x v, cos 8 H(Ut-x) in Regions C and D . (7.11)

* See Appendix E for higher order approximations to the pressure coefficient.

- 26 -



Here we have an impasse. Since the solution has but a single ar-
bitrary constant, V , it is, in general, impossible to satisfy both (7.10) and
(7.11). Thus, the present method implies an approximation which will be dis-
cussed presently.

Since the solution is continuous, Eq. (7.11) cannot be satisfied,
so the value of V will be chosen so as to satisfy Eq. (7.10). That is, we
will insist that the correct steady-state solution be obtained. Tsien used
the approximate (slender body) condition

fr = vo cos B

rather than the exact boundary condition (3.3). It is no more difficult to
use the exact condition, so this will be done. Using (7.10), we obtain

2
v 2v /8 )
- = (7.12
o 2702
- 1 ,
cosh l('l->+ 2——-—-—-——-Y /B 1-‘y2
Y Y2

where

Y = 8R'

Rl

]

slope of cone surface

It is assumed, of course, that

R' <=

so that the body lies inside of the Mach cone.

The amount of error involved in not satisfying Eq. (7.11) can be
shown graphically as in Fig. 5, p. 29. 1In this figure is shown the quantity
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Downwash (Calculated) - Downwash (Exact)
Downwash (Steady-State)

for different cone angles. The calculated downwash is the left-hand side of
(7.11) and the exact downwash is the right-hand side of (7.11). The steady-
state value is simply Vo €08 8 . A Mach number of two was used here, and the
cone location with reference to the Regions B, C, and D is shown in Fig. 6.
Fig. 5 shows that the error decreases as R' becomes smaller.

Indeed, as R*'—>0 , it can be shown that Eq. (7.11) is satisfied
exactly. 1In other words, the solution requires a slender body approximation in
order to satisfy the boundary condition. For R' very small, (7.12) approaches

T eovr? . (7.13)
i (o)

Substituting (7.13) into (7.5) and retaining only the lowest order terms,

2
v_.R*'" cos @ _
lim (¢r‘R'¢ ) = O x=-Ut
x 2 2 2
R [(x-Ut) ]

[oxvt - (x2402t2) ]

R'—>0 3/2

+ 2L 4 o@")
R'2

or,

lim v, cos 8 _(X_Ut)s

-R' =0
R'—>0 (fR'%y) 2 L »13/2
[(x-Ut) ]
= v cos @ H(Ut -x) . (7.14)
3/2

The last step holds since [(Z)e_-l / = - (2)® for Z negative.

- 28 -



Downwash (Calculated) - Downwash (Exact)

Downwash (Steady-State)

r/Ut

[}
Q.41
0.24
< x/ut
0 ] n 1 .} }
T L N st L
0.2 0.4 1.2 1.4 1.6
-0.2p— R' = 0.5
0.3 - -
_0.4_ o.l —
0.0 e e ___
-0.6
-0.81~
-1.0—

Fig. 5 - Relative Error in Boundary Condition

x/Ut

Fig. 6 - Regions of Influence for Various Cones
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Heretofore, other authors have found approximate solutions to the
potential equation by: (1) neglecting certain terms in the equation by assum-
ing slender body and/or high frequency; and (2) using a slender body approxi-
mation for the left-hand side of (7.11). The present theory involves only a
slender body approximation for the right-hand side of (7.11).

It cannot be said at this point whether the present solution is any
better or worse than previous approximations. However, at least the present

solution leads to the correct steady-state values.

The growth of 1lift will be found next and compared with Miles'[l?]
results.

The 1lift coefficient, Cj , is defined as

2n p1l
o = & f f CpR' cos @ x dx d8 (7.15)
S Jo 0

where S 1is the base area of the cone which is assumed to have unit length.
We need to consider three different cases.

1. Part of the cone has not yet been affected by the gust, i.e.,
part of it lies in Region E.

2. The cone is completely within Regions B, C, and D but not wholly
within B.

3. The cone is completely within Region B, i.e., steady state has
been reached.

Carrying out the lengthy integrations and simplifying, the results
obtained are:

- 30 -



1+R'2

iV

Case 1l: Ut <

R'2 sinh™t __.E:L>

L, (Ut )2 aR?)
°Ls (14R'2)2  Af142 (14mr2)%/2
2 2
Case 2: LR' < Ut < L+R!

1+ -q’ 1~y 1 - 1 1-y ’

5
C 1 - 1 1-ve 2 o . Miv
L [ Y
cp (0t)® :"eL' - > " -
st (1+R'2) 21 A 142 (1+R'2

+ R'2 [S:th (' L )+ sinh™t
2'\/1-y2 (1+R'2)

o AN @-ut)3R? (erBut) Rt
2/ (1-v%) (1+r'?) 2

2
Case 3: Ut > — LR’

1 —%4—\/ l—‘y2 ’
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where the steady-state lift coefficient is

c - 2 l-‘Y2 (Vo/U)
L
st 42 cosh'l($>+ (1+2R*2) \ 1-y2

. (7.17)

Figure 7 shows CL/CLst plotted against Ut for MR' = 0.3. The

result of Miles is also shown. The most significant differences are as
follows:

1. Miles' results depend on the single parameter ¢ = MR' , while
the present case depends on both M and R* .

2. There is no "overshoot" in the present theory.
3. BSteady state is reached in a finite time.

4. The growth of 1ift is continuous and differentiable, that is,
there is no '"knee" in the curve.

In addition, the steady-state 1ift predicted by the present theory
is in agreement with the exact steady flow results, whereas Miles' theory pre-
dicts the slender body result of 2v, /U (see Fig. 8).

In the future, it would be highly desirable to obtain a numerical
solution of Eq. (3.1) satisfying (3.3) for a cone of finite semiapex angle.
This would allow a comparison of various theories, as well as possibly pro-
viding more insight into the phenomena involved. A possible approach to such a
solution is presented in Appendix D.
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VIII. GENERALIZED FORCE COEFFICIENTS

This section contains the derivation and tabulation of various co-
efficients which are required in the next section. These coefficients are the
normal force or lift coefficient, the moment coefficient, and a third coeffi-
cient called the bending moment coefficient. We call these, collectively, the
generalized force coefficients. These will be defined by

cp =1 fCPxI’R dx (8.1)
L gl
where C is the Lth generalized force coefficient, S is & reference area

F
2
(here the base area of the body), L is the reference length (length of body),
and R(x) is the profile shape. By setting ¢ = 0, 1, and 2 we get Cy, 5 Cym s
and Cp , respectively. The latter is required in the missile bending equations,
when the mode shape is approximated by a quadratic.

Equation (8.1) contains no angular dependence. It has already been
integrated out. Therefore, in the remainder of this section no references will
be made to the cos 8 dependence of the potential function and its derivatives.

It is most advantageous to express (8.1) in terms of indefinite in-
tegrals, in a rather general form. This is due to the fact that & numerical
procedure, which is an extension of the Karman-Moore technique, is contemplated.
In addition, the many different forms of limits (of the integrals) which can
occur, together with the complexity of the expressions make it most efficient
to use indefinite integrals. The limits can then be substituted into the ex-
Pression numerically by the computer program.

For the purposes of this section, the approximate (linear) expression

Cp = 3—2 (Be+Upy) (8.2)

will be used. The nonlinear terms are considered in Appendix E.
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The profile shape, R(x), will be taken as a frustrum of a cone,
with the equation

R(x) =R'x +P . (8.3)

By properly choosing R' and P, any desired segment of a cone-cylinder body
can be correctly expressed by (8.3).

Now, since the gust doublet will be used as a basic solution in the
Karman-Moore approach, a slightly more general form of this doublet will be
needed. It is sufficient to consider a gust doublet which starts at an arbi-
trary point £, on the x-axis at the time t (see Fig. 9).

i
=]
¥
A
<

Fig. 9 - General Gust Doublet
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In this figure, the equations of the surfaces which define the
regions are:

l- Xn = Br (8-4)
2. (Xn-UTm)2+ - aeTIi (8.5)
3. Xp=UT, - /8 (8.8)

where we have introduced the notation

X =x -8y (8.7)
Tp =t -ty - (8.8)
Ve then have, in Region B,

$ = ;ﬂ@ 62r cosh'l<8£; - sir'\[—xg-a_zre— (8.9)

= o AP Xn 2_ .
g, = - 2 (EE) 1 (8.10)
=+ AmnBQ cosh'l<)-c_fl> + E'\Kﬁ>2—l (8.11)

r on Br Br Br )
3 . 0 (8.12)
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while in Regions C and D (upper signs used in C)

g = % + p2r cosh'l [XH-UTm+M '\j(xn'UTm)2+r2} .

$ =+ mn

- + Mun (X, -UT_ ) e
¢r + 447 1'2 [(Xn"UTm )2+r2] 3 /2 [EXSUTm-(Xn+r )(xn+U Tm)-]
- BRX,UT) o [ XU Af(x UT_)Per?
2 B cosh
[( Xn~UTy, )2+r2] Br

Br

. rz(xn"'UTm)"'Xi(xn'UTm)-Mra ,\/( Xn-UTm)2+r2

r '\/(Xn~UTm)2+r2

1

4ar

+

2]3/2 E?

[( Xn 'UTm )2+ r

1

[(Xn'UTm)2+r2Jl/2

[E(Xn'mm)z-ﬁgrz] -2Br (

X
B

UTy, (X ~UTy ) S4r2(x8+r2 )]

2
_n) a
r

+ Be[cosh"l :3(—:) * (z_i)\j<§rri 2-1]

2_ 2 }
r Xn+2xn(xn UTm) . 32

[( Xn-Uln )2+r2J /2 V (Xy-UTy,) 24p2
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The expressions (8.10), (8.12), (8.14), and (8.16) may then be placed
into (8.1), using the relation for Cp given in (8.2). The integrals may then
be evaluated on the segment of surface given in (8.3). The resulting force
coefficients are given as (8.17) to (8.19) for Region B and (8.20) to (8.22)
for C and D.

In B:
A
Cp =Cp= - 20 __ l:(l-ye)x-(gnwzm')] Y
0 SU(1-y?)
S50 (PR'€_)° cosh™! (8.17)
A 1-y2 n .
oA £ _+B<PR!
1 st(1+2) |3 L(1-v")
Cp =Cp= - __f.nf.___. [S(l—yz)x+5(§n+ﬁ2PR' )] Y3/2
2 6SL2U(L+2)2
5(€,+82PR" )2-(1-y2)(52-3%P?)
+ s C (8.19)
4(1-y2)2L L
In C and D:
Amn 5 1/2
Cp = Cp = ——  §[(1+R'2)x+PR' -€_+UT. |2
Fo L oqu(a+r'2) [( JxHPR! Bt m]

™l 7

, [R'(gn+UTm)+P]2-2UTm[PR'+R'2(gn+u'rm)} y

Af1+R72

N %cL (Region B) (8.20)

- 38 -



Cp, = O»

1 SLU(1+R'2)

Amn { 1 ,3/2

3

+ UTm[2(1+R'2)(§n+UTm)(PR' -E,-UTy, )+3(PR? -%;n-u'.l‘m)2

RPNV 2] sirnt 7
(RN E (5nt Uy )] 2(1+r2)%/2

) [PR'-gn-UTm] [R'(§n+UTm)+P]2 sinh™t Z
2)3/2 '

2(1+R*

. U’I’m[(l+R'2)x-3(PR' ~E~UT,) -2(1+R'2)(§n+UTm)] 72

2(1+R*2)

_ [PR: -§n-UTm] [(1+R12 W+PR* -gn"UTm] Z]_/g

2(1+R'2)

+ % Cy (Region B)
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= Cp =
B
2SL2U(1+R' 2)2

AL {3(1+R'2)x-5(PR' £ -UT, ) 3/

o
F2 6

[S(PR! _gn_wm )2_(1+R|2)(P2+(gn+wm)2)] [(1+R'2)x+PR' _gn_UTm] Zl/2
+ !

4(1+R'2)

, Ul [2(1+R'2)2x2-5(PR' £, Uz (1481 2)x-3(PR" -gn-UTle ke
2
)

3(1+R!

Uy EI-P2+4(§n+UTm)2+3(§n+UTm)<(l+R'2)x-3(PR' €, - m))] g1/2
3(1+R'2)

. [S(PR'-En-UTm)Q-(l+R'2)(P2+(§n+UTm)2>] [R‘(§n+UTm)+P]2 sinh™t Z

4(1+R'2)3/2

) WmE’R'-gn-UTm [15(PR'-gn-UTm)2-9(1+R'2)@2+(gn+u'rm)2)] sinh™t Z
3(1+R'2)3/2

) Urm(ganm)[s(PR'-§n-UTm)2-(1+R'2)(P2+(gn+u'rm)2)] sinh™ Z }

(l+R'2)l/2 o

+

N+

Cp (Region B) . (8.22)

- 40 -



In these equations we have used the sgbbreviations

= X2 - PP(R'xP)2 (8.23)

]
1

7 = Xn"BeR' (R'x+P)

) (8.24)
Z = (X,-UT;)? + (R'x+P)? (8.25)
7 o (Kp=UTy 4R (R'x+P) (6.26)

R'(§,+UT, )+P
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IX. APPLICATION OF THE GUST DOUBLET TO CONE-CYLINDER BODIES

The gust doublet solution which was derived and discussed previously
can be used as the fundamental solution in a Karman-Moore procedure for an
arbitrary body shape. This section presents the detailed procedure to be used
for a cone-cylinder body such as the Saturn V configuration.

The basic solution given as Egs. (8.9) to (8.16) is in a general
enough form to be applied directly to a cone-cylinder combination, provided
the points §, , the times t, , and the coefficients Ap, are known. To de-~
termine these, use is made of the fact that the steady-state solution agrees
with the crossflow solution of Tsien.

It is convenient to meke use of Tsien's solution directly. That is,
first one can choose as "control points” on the body surface the same set as
would be used in a steady-flow computation.* The Mach lines through these
points intersect the x-axis at the points §n . Now the coefficients can
be determined in the standard fashion if the steady-state results (Region B)
are used.

To account for the motion of the missile through the gust front, it
is logical and consistent to delay the start of emission of the doublets until
the gust reaches the local origin, &, . This gives the time, tj , as¥**

ty = §,/U (9.1)

The complete solution is then easily obtained by summing all of the
doublet solutions used. The only remaining step 1is to integrate the summation
over the body surface to obtain the desired generalized force coefficients.

The expressions (8.17) to (8.22) developed previously can be used for this
purpose, in the manner next described.

* See Appendix A for a discussion of the procedure.

*¥ The subscripting notation now becomes somewhat superfluous since m and n
are no longer independent. To avoid future complications, however, it is
best to retain both subscripts and make use of (9.1) when applicable.
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The limits of integration depend on the way in which the regions of
space formed by the gust doublets intersect the body surface. Obviously, if
there is no intersection, there is no contribution, while at the other extreme,
a portion of the body could be in Region B and another portion in Regions C
and D. To facilitate the determination of the limits, some geometrical con-
structions are employed.

Consider a straight line segment, representing a portion of the
missile surface, given by the equation

r=R'x+P . (9.2)

This segment extends from x = x5 to X = xp, , where x, is less than x .
The contribution to the total force coefficient CFL at a given time, t ,

)th

which results from the integration over this segment of the (mn pressure

coefficient, can be obtained with the help of Fig. 10.

Fig. 10 =~ Regions of Integration
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R The numbered curves are the ones given in Fig. 9, except that now
the circle is considered as two curves which meet at the point Q2 . This

point is at the intersection of the circle and a line of slope, R' , drawn

tangent to the circle. The point Ql is at the intersection of curves 1 and
3 (and 2) and has the coordinates

BeuT,
X =g, + > 2 (9-3)
M
UT
r = BMQm (9.4)

Through Ql is also drawn a line of slope R' . These two additional lines
then help form the new regions labeled F, G, H, and I .

The line given in (9.2) intersects the curves 1, 2, 3, and 4 at the

points
g _+BP
= 1R’ (9.5)
_ S4tUT, P/
5T T LR/ (s-6)
. €,+UT R'P (1+R'2)[P2+(§n+UT )2-a?r2 |
Xy g = ———5— §1¥4[1 - Z (9.7)

1+R'2 [§n+UTm-PR ']2

Equation (9.7) gives imaginary roots if there is no intersection. The end
points of the line segment, (9.l), can easily be located relative to the
regions shown in Fig. 10. Once this is done, Table I can be used as an aid in
determining the limits of integration (values of x) to be used with the indefi-
nite integrals given in Section VIII.

- 44 -




TABLE I

LIMITS FOR FORCE INTEGRALS

Location Location Limits, Region B Limits, RegionsC and D
of x, of X, Lover  Upper ower Upper
A A - - - -
A B Xy > - -
A c Xy X5 X5 X
A D x1 *2 %2 %
A E X X, X, X,
B B Xq Xy - -
B ¢ *a *2 % *
B D Xa X2 X2 *p
B E *a *2 X2 X4
c c - - Xq Xy
c D - - Xg X
C E - - Xg X4
D D - - Xg X
D E - - Xg X4
E E - - - -
A F - - - -
A G - - X Xy
A H - - X, X,
F F - - - -
F G - - Xg Xy
¥ " - - Xn X,
G G - - X, *p
G H - - X, Xy
H H - - - -
A I - - - -
I I - - - -
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Regions C and D are really no different as far as the force coeffi-
cients are concerned. There are also a few other ways that the table could
be shortened; but since the use of a computer is assumed, it is easier to have
a longer table utilizing simpler and more direct logic.

To obtain the total force coefficient, then, one needs only to re-

peat this procedure for all of the §n and for all line segments such as
(9.2). A double summation then yields the desired result.

X. CONCLUSIONS AND RECOMMENDATIONS

Two basic methods were considered for predicting indicial aerodynamic
forces on cone-cylinder bodies of revolution. The Karman-Moore [i] technique
uses a superposition idea well suited to digital computers, while the method
of Adams and Sears [8] is more analytical in nature, using transforms and ex-
pansions about the slender body solution.

The Adams-Sears scheme is not so well adapted to handling slope dis-
continuities, so the Karman-Moore idea was considered to be more useful for
this study.

A fundamental solution - the gust doublet - can be used with the
Karman-Moore method for pointed bodies with arbitrary profiles. This solution
is derivable from more elementary point sources by superposition. The gust
doublet possesses certain properties in various regions of space:

1. An undisturbed region upstream of the Mach cone,

2. An undisturbed region sufficiently far downstream, into which-
the distrubance has yet to propagate,

3. A spherical region characterized by transient or unsteady flow,
and

4. A region in which steady-state flow has been achieved.

It can be shown that the existence of these various regions is a property of
general solutions to the unsteady potential equation.

The gust doublet satisfies the exact boundary condition for a cone in
the steady-state region. Furthermore, the solution is precisely that of Tsien's
in this region. Therefore, existing numerical procedures for computing steady
crossflow, based on his modification of the Karman-Moore method, can be
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readily extended to the indicial case. The boundary condition is satisfied in
an approximate sense in the transient region by the gust doublet, and exactly
when the limit of slender bodies is considered.

The work of Bond and Packard can be modified to yield a solution of
the same form as the gust doublet, but with the wrong magnitude. The two
theories agree, however, in the case of a body which is vanishingly thin.

The linearized 1lift coefficient differs in many ways from that of
Miles for a cone. Miles' theory gives the slender body lift coefficient at
steady state, whereas the present theory is "exact" as far as linear potential
theory is concerned. The growth of lift for the gust doublet differs from
Miles' result in the following respects:

1. It has no "overshoot."

2. It is a function of both M and R' , and not simply of the
product MR' .

3. Its initial rate of growth is more rapid.
4. It has no discontinuities in the rate of growth of lift.
5. It reaches steady state in a finite time.

The inclusion of the quadratic terms in the pressure coefficient is
necessary in order to obtain accurate force coefficients. One must retain
those terms involving axial derivatives, and not just the radial derivatives,
as is often done. This is particularly true with blunter bodies, and at Mach
numbers significantly higher than 1.

The generalized force coefficients can be expressed in integral form.
In special cases, the integrations can be carried out analytically, but in
general, a numerical integration would probably be more efficient. More work
should be done, both in obtaining the force coefficients as well as comparing
them with other theories (e.g., steady nonlinear flow theory for cones). This
is mandatory if one is to be able to establish ranges of applicability and
accuracy of the gust doublet technique.

An exact solution for a cone encountering a step side gust, based on
linearized potential theory, should be obtained. This would serve as a basis
for comparison of approximate theories. An analytic solution seems improbable,
but there are definite possibilities of obtaining numerical solutions. One
possibility is the technique discussed in Appendix D. It should be pursued
further in order to assure its convergence, etc. Modifications may be neces-
sary to obtain high accuracy economically.
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The idea of using surface source and doublet distributions is in-
teresting from an intellectual viewpoint, but appears to be impractical due to
the extreme complexity of the resulting mathematical forms. Unless some new
insight is obtained from and about such a technique, it is recommended that it
not be pursued further,

A more accurate theory for predicting the forces produced by an im-
pulsive side wind would be highly desirable. The unit impulse is often the
most convenient kernel to use in the Duhamel integral technique of computing
missile responses to actual wind profiles. An impulse theory could be obtained
either analytically or numerically from the existing gust doublet theory. The
choice of a technique will involve a consideration of the economies involved,
accuracy obtainable, and the form of the results.
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APPENDIX A

REVIEW OF THE KARMAN-MOORE AND TSIEN THEORIES

Von Karman and Moore [i} developed a numerical method of solving for
the steady axial flow over an arbitrary pointed body with axial symmetry. Later
Tsien [é] used the same basic technique for the steady crossflow. This work
will be reviewed briefly here since it is needed for the application of the
gust doublet solution discussed elsevwhere.

For steady axial flow, a basic solution is the source distribution
given by

X-8r
d(x,r) = f £(g) dg . (A.1)
0

The upper limit reflects the supersonic character of the solution, it being the
equation of the Mach line. By choosing f(g) = By , where B 1is a constant,
the potential becomes

¢ = B x cosiit X).-4] x°-p%° }7 . (A.2)

This corresponds to conical flow. It represents a series of sources distributed
along the positive x-axis, starting at the origin. The source strength is pro-
portionsl to the distance from the origin.

A generalization of (A.2) is easily made by starting the source dis-
tribution at, say, x = §k . 'Then,

B = B 4 (x-iy) cosn (";k> Nxeg PP b a3
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The corresponding velocity components are then

- B cosh™1 <j j) (A.3)

: BBk\l Sk , (.5)

"

<
i

The numerical technique consists of summing a group of suitably chosen
solutions of this form. This is facilitated by Fig. 11.

r

Fig. 11 - Control Points

The first step is to select a sequence of control points, Pk , on the surface
of the body. Through these points are drawn Mach lines which intersect the

x-axis at the points {p . The velocities at a point, Pg , are then
k"l g x
u(xk,rk) = ZZ: B; cosh™t "x” k PiHl) | cosntt ! . (A.8)
i=1
k-1 . 2 2
X841 Xx-§
vixor) =- g B L) L I S O I 0 % )
i= fry BTy
-




The boundary condition

*| Body u

is then used to determine the B's . If (A.8) is applied at P , By can be
found. Then, 32 can be determined by using the boundary condition at P3
The scheme can be continued in this manner until all the B's are known.

The velocities at intermediate points can then be easily computed.

For a point P which lies between Pk and Pk+l we have

k-1
-1l X';:'.l.l -1 x-éi -1 X-
u(x,r) = E B, |cosh ( = >- cosh ( > - cosh ____E) (A.9)
= 1[ Br Br x er

v(x,r)

I N R MY (G R

It is often more convenient to rearrange (A.9) and (A.10) so that they appear as

M

u(x,r) = - By cosh'l(x.;]) - (B;-B, ;) cosh-l<x-§i> (A.11)

gr

i=2

[/x-£\2 X [ -£2
v(x,r) = gB; C.il) -1+ E (B;-B;_7) (";1) -1 . (A.12)
QI' i=2 ’ -
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The problem of steady crossflow may be handled in exactly the same
fashion. Here, however, the basic potential function is

e e\
¢k = By 32r cosh’1'<3E§%> - (x—gk) (fﬁjf) -1 (A.13)

and the velocities are

U = EBkB,\/ (x_-B?if-l (A.14)

. (A.15)
v - u.%z = v, (A.16)
X Body
although Tsien used the slender body approximation
v=v, o . (A.17)

The technique presented here is quite general and can be applied
readily to a variety of body shapes. Accuracy can be improved by using more
control points. The manner of selecting the control points efficiently is
largely a matter of experience. However, it can be said that generally one
should choose these points closer together in regions of rapidly changing slope.
For the case of a shoulder, several poilnts should be located immediately down-
stream of the discontinuity to obtain the best accuracy.
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APPENDIX B

THE USE OF SURFACE SOURCE DISTRIBUTIONS

This Appendix contains a treatment of the axial flow over bodies of
revolution. A distribution of sources over the surface of the body is con-
sidered rather than an axial distribution of sources as in the Karman-Moore
procedure. The steady flow case is considered. This was done in an effort to
see what forms the solutions take.

The principal results are formulas (B.19a) and (B.19) for the axial
flow potential. They are integral expressions containing the elliptic inte-
grals of the second kind. In the work immediately following (B.19a) and
(B.19b) an attempt was made to satisfy the boundary conditions on the body
surface. The resultant expressions became rather unwieldy. Finally, the
special case of a cone in axial flow was considered. The final result for
the cone is contained in Eq. (B.28). It is found that the cone problem can be
solved with a surface distribution.

Consider the problem of axial flow over a body of revolution, as
shown in Fig. 12.

i (x,y,z)

- r

€1 § €2

Fig. 12 - Notation for Appendix B
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The axial flow equation is

or

while the boundary condition at the body is

3 .y 2% _nr
[g-R(X) ?”Jr=R(X)—R

Consider the basic source solution

¢ = = -
V (x-6)2-82[(y-1)2+ (2-)2]

L3 I Ll

The characteristic cone opening forward from the point x,y,z

r=0 or
(x-8)? - 2[(y-M>3+(2-0)?] = 0
The body surface in coordinates E,T,{ is

1 + (2 = R2(g)

or
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(B.5)



N=Rsin @

C=Rcos @ (B.6)

wvhere © = 0 in the plane y =0

We want to construct a solution by placing sources on the body sur-
face rather than along the axis. Defining the region of integration is the
next step to be performed. Letting

y=1rsin{
z=1r cos |
we have, using (B.6),
(y-1)2 + (2-€)% = r2 + B% - 2Br cos (0-V) - (8.7)

But we shall perform an integration on € symmetric in ¢ . Hence we can take
V= 0 in (B.7) without loss of generality. We write

1
\/(x-g)g-ﬁe(re—ERr cos 8 + R®)

AN
i

(B.8)

where R = R(Z)

The solution desired can be written in the form
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§=f§lfn £(g) 48 dg
Y - \J(x-g)z-se(ra-ERr cos § + R®)

N ng fe° £(5) 0 dg
§1 Y-8 '\/(

x-C )2-p2(r2-2Rr cos O + R°)
where the limits of integration are the solutions of
gl + BR(gl) =Xx - fr

§, - BR(Ey) = x - Br

and where

-1 £)e
8, = cos __l__[r?—rRQ-ﬁ.’.‘_g.)_] , 0285w

°© oRr 82

For the special case of the cone, (B.10) yields simply

-

_ X-Br
81 = 1486
b,
§2=X"r ’
1-86

8§ ©being the slope of the cone.

Since the arguments of (B.9) are even in 8 , we write

3 = 2(3 +8,)
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where

§, = fgl fﬂ £(5) a6 o (B.14)
Y Y ‘\/(x-g)a-se(rg-%r cos § + R<)

©
[
n

f§2 feo £(§) 40 &8 . (B.15)
51 0 '\/(x-g)e-ﬁz(re-ERr cos & + R°)

Now, it can be shown that the integral

% de 2 /a+b
\/(; ‘\/ a+b cos © ) J;K( 2b ) (B.26)

where 90 = cos'l<- i) and K here is the complete elliptic integral of the
b

first kind. Also, we have [26]

v

0 Afarboos 8 e Ve

Using the relations

(x-€)2 - B3(r*+R%)

o]
I

(B.18)

one then obtains
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L
[}

fgl 2£(€) K ,\/ 48"Rr g (B.19a)
° 2.2 2 2_02(. n)2
0 '\/(x-g) -8%(r-R) (x-€)°-B<(r-R)

Ep

2.a2 2
f 2f§ (x-§)°-8(r-R) dE (B.19b)
§1 Af2p%Re 48Rr

where, in general, R = R(E) .

§

It remains now to apply the boundary conditions (B.3) at the surface
of the body.

Note that the integrals in (B.19a) and (B.19b) are singular; i.e.,

K(k)>o as k—>1 or E-—>E, . However, the integrals of these terms yield
a finite result.

The forms (B.19a) and (B.19b) are not as unappealing as they may
look. The expression simplifies somewhat when the boundary condition is ap-
plied. Take x and r derivatives of (B.19a) and (B.19b). After much man-
ipulation, one obtains

%o _ . f U ere)xf) \j 4p%Rr i
o 0 [(x-£)2-82(x-r)F%2 \Y (x-6)%-p%(x-R)?
_ 51 20(e) N 75Re (x-E) o 48°Rr a
0 [(x-8)2-2(r-8)7]? (x-§)2-p3(r-R)°

( ) 21 (€) " 48°Rr
\/ (x€)2-62(rR)2  \ (x£)2-62(z-R)2

€ = §1(x,r) .

(B.20)
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38, 51

O

462Rr

_f 2£(£)p2(r R) K\/
o (222 02(r-m)2]/*

2£(g) N\ 48%Rr p%(r-R) .

a
(x-§ )e-ez(r-R)e>

4£(€)p°R

[(x-s )2-132(r-1?)2]2

(x-£)2-p2(r-R)?

38 _ fgz 2£(E )(x-E)
ox .

V462 [(x-€)2-82(x-R)2]

2f(g) X |
A (x-£)22(rR)

S 482RrBX-§)2-92(r-R)2]l

(%)
ox |

2£() (x-£)2-8%(xR)2
\’4BERr 492Rr

@]

-
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2£(g) \j (x:5)2-0%(rR)
‘\[ 4p%Rr 48%Rr

48%Rr
(x-§)2-62(r-R)2 € = & (xr)
(B.21)
(x-)2-p2(rR)2 ) ;-
48°%Rr
R
~§ = gg(xir)
> (B.22)
J€ = §l(x,1')




3%

i f ﬂs_zL_ \jgg)a -82(r-R)?
o 51 (462Rr)3/2 4R

[ 2£(5)8%(x-R) . ar(£)9% [ (x-£)2-62(r-2)2] /2

6 | ap%hr [(x-£)2-02(x-8)2) (48%r)2

x (x-5)2-8%(r-R)?
4B°Rr
( ) _ee(e) o < (;-g)a-se(r-RF)
4B2Rr g = ge(x’r)
%> 2f(g) <5é/(x-§)2 2(r-R)Q:) (B.23)
§ = gl(x:r)

Combining (B.20) and (B.22), and (B.21) and (B.23), the singular

terms at §l cancel. TFurthermore, at §2 the argument of K goes to zero
and

K(0) = n/2 (B.24)

Thus, combining (B.20) and (B.22) we get
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3 Jrgl 2£(5)(x-E) X 48°Rr a
0 [(x-g)2-perm)2)? (x-§)2-2(r R)?

- [P et N ) o, \/ o >d§
O [(x5)242r-)2)" (x-£)2-52(r-R)?

. 2 en(g)(xet) oo [aePeteap ),
g 2 2.a2 511/2 452
1 4 Rr[(x-g) -85(r-R) ] B°Rr

(B.25)

. <a§2> [ n£(5) ]
o ‘¢%%r§=§gmﬂ

Combining (B.21) and (B.23) we get
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a_§2+ﬁ= f’s'l 27(£)p°(r -R) X \/ 4p%Rr 2> ae
o [l r2] (x-6)-p"(r k)

o [P ) eee) aptae Be(rR) | 4£(£ )8°R

° | [ocPs2eR2]" Afalar [(ee)20%(0)?]

X K 432Rr >d§
(x-£)2-82(rR)?

? a(s)%R K<\/ (x-g)a-se(r~R)2> a
€1 (462Rr)3 /2 %Rr

2
1 |ep2re [(x-g)2-82(r-0)2) 2 (48%Rr)

Kt < g-g)eéaa(r-RF) «
48“Rr
+< )[nf(S) ] (3-26)
462Fr

£ = ga(x:r)

) f 52{ 2£(£)8%(z-R)  +2(2)%8[ (x-6)2-p2(r-m)2 M2
€




From the appearance of (B.25) and (B.26), this method of solution
does not, at first glance, look too appealing. However, it might be instructive
to look at the solution for the pure cone in which case the various expressions
simplify somewhat, We evaluate (B.25) and (B.26) on the surface of the body

where

(B.27)

Letting

2 = (1-%2)

and applying (B.3), we find

a@l 3s, 3%,
-—. o} em—— - 6
ox ox

r = R(x) r = R(x)

G55 _
=f B 26M2  f(E) (286 N x€ a

0 o3 (x-§)2 o (x-£)

f(l+86 1822 £(2) \[3E , 28 __ £(E)g (
(1.4 (x_g)S {32 ’\"x—g(x_g)Q o (x‘g)

X
f W2 o2(8) , _w EEND) | 4 [ a g-g ac
1 28260 X5 4525 xPe 286

j 1 _£(g)e o (x-€)
(-m) 2862 (xg)s/z 286 e

1+p6

n(p+s) £(x) _ ¢ (B.28)

2B6(1-BS) x
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If f(x) is assumed to be linear in its argument and one makes the
transformation t = xy in the integral term of (B.28), the left hand side
reduces to a constant. Thus, the boundary condition can be satisfied exactly
for the cone. The surface source distribution has the same form as the line
source distribution in the Karman-Moore procedure.

The case of steady crossflow can be attacked in much the same manner
as presented here. The analysis is slightly more involved, with elliptic inte-
grals of the first and second kinds involved.

Due to the complexity of the surface source distribution technique,
it is not deemed advisable to use this method unless some distinct advantage
over the axial source distribution is apparent. This is particularly true
when one considers the extension to the non-steady problem.
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APPENDIX C

APPLICATION OF BOND-PACKARD THEORY

The work of Bond and Packard [}i] can be modified and extended to
yield results which are similar in form to those presented in Section VII. Their
work will be reviewed briefly here for completeness. Then, the appropriate
downwash is inserted and the potential is obtained in closed form, for a
conical body.

In terms of real time, t , the potential Eq. (3.1) may be written

Pt et L +L b - Lgy - 1o, = (c-1)

1
e
Bond and Packard used the approximate boundary condition

¢ I = W(x,t) cos @
r=R(x)

or, for the gust loading,

¢rlr=R(x) = v, cos @ H(Ut-x) . (c.2)

Assuming a cos § dependence of ¢ on ¢ , and taking the Laplace
transformon t gives

= 7 1 1 7 2u 2=
'Be¢xx + Gy + ; @y - = g - =2 - 5 g=0
with

= W(x,s) (C.3)
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where

g == 1) .

cos O

Transforming again on x and solving the resulting equation yields

¢(P:ras) = £(p) Kl(or) (c.4)
where
o= \/ 0%p2 + 2 Usp , EE
a2 a2

and f(p) 1is an arbitrary function to be determined by the condition (C.3).

Since (C.3) cannot be transformed on x , the function ¢ is
written as

- ct+iw
g =—2%T;Lim Prr(p) (or) ap (c.5)

The slender body approximation is made here by writing

L
or

This allows the r-dependence to be separated out. Using (C.6) and (C.5) in
(C.3) results in

ctiow

1 e®* £(p)ap - . RR(x) W(x,s) . ©.7)
g

Cc-ie

Then, taking the Laplace transform of (C.7), we can solve for f(p) to obtain

) .. fw e P R2(y) W(g,s)ag . (c.8)
o o}
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This expression is placed in (C.5). Now, the approximation (c.6) is not used
for K;(or) in (C.5). Rather, it is possible to rewrite (C.5) in terms of the
convolution integral

Ms -
- o -B_Z;(X‘S) E'ST'J )2 22:]2 =
Bix,r,5) = _g;f e cosh 'Q anf (x-5)°-p I‘IR (L M(g,s) a& (c.9)
© \/ﬁ(x~s)2-52r2

where, to keep the integrand real, we require § £ X-Br .

- 8%
W(g,s) =§-e v Yo (c.10)

We put (C.10) in (C.9), take the inverse transform of (C.9) and interchange
the order of integration to obtain

¢(x,r,t) - a_ f-Br Ra(g)vo X
Tl A g
(c.11)
M

ctim  S(t - == (x-¢) - §/U) S ‘
—]—‘-_- f € B%a cosh Bza N (x-§)2-92r2 ds »dg cos 8
2mi c 5

i

Expressing the cosh in terms of exponentials, the quantity in
brackets may be written

coin S(=T) s(teTy)

1 e * e ds (c.12)

2
2m c-iw 8

- 70 -



where

M . £ 1 N\2_ne2 C.1
v, T m—— | - + L — - - . . 3
1,2 B2 (x-§) 52 \/ (x-g )81 ( )

The expression (C.12) may be immediately evaluated to give

% {H(t-'rl) +H(t- 1) (C.14)

~

Equation (C.11) hence becomes

os © . (c.15)

glx,r,t) = & fx-sr vy B [He-m (e-5,) @
% do 2\I(x'§)2-82r2

Now, the quantities t-7 and t-Ty, , together with the upper limit,
are precisely the surfaces dividing the Regions A, B, C, D, and E. Therefore,
the integration required in (C.15) is precisely of the same form as (7.1) if
R(y) describes a conical surface.

The resulting potential is identical to that found in Section VII
except for a multiplying factor. That is, the solution obtained from (C.15)
must be multiplied by the quantity

1
‘ (c.1s)
t - '2 t
°R*2 cosh 1<§7> + '\/1-323 (1+2R'2)

The expression (C.16) approaches 1 as R' approaches zero. In
the limit of very slender bodies, then, the results from Bond and Packard agree
with those of Section VII. However, for the steady-state portion, the gust
doublet gives the exact results, whereas Bond and Packard's theory is only
approximate. For this reason, it seems that the present theory may be more
accurate generally.

Apparently, there is no easy way to relax the slender body approxima-
tion inherent in Eq. (C.6). Carrying additional terms in the series expansion
for the Bessel function will not allow the separation accomplished in (C,7).
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APPENDIX D

A NUMERICAL APPROACH TO THE INDICIAL AFRODYNAMICS

The gust doublet solution given in Section IX satisfies the exact
steady-state boundary condition for a cone. The boundary condition is satisfied
only approximately in the region near the gust front, however. This approxima-
tion becomes better as the cone gets thinner - implying a slender body approxi-
mation.

In order to have a basis for comparison of the doublet solution with
other approximations, it is desirable to have an exact solution. This Appendix
outlines an approach to an exact numerical solution for a cone encountering a
step gust.

The technique to be used here is an extension and generalization of
the Karman-Moore technique into a second dimension, time. A series of funda-
mental solutions are to be chosen. These solutions will have two parameters,

» referring to a position on the x-axis, and a time origin, tm . Each
solution will have an unknown coefficient, Amn , assoclated with it. Once the
"layout" of these solutions in time and space is chosen, the boundary condition
can be applied at various positions and times to determine the coefficients.
Then, of course, any other desired quantities such as the lift coefficient can
be found by summation.

The fundamental solution chosen should have certain properties. 1t
should be time dependent, continuous, and finite everywhere. Based on these
premises, the gust doublet solution is satisfactory for this purpose. In ad-
dition, it gives the steady-state solution exactly, which will aid in the
Jjudgment of convergence.

The values, gn , are assumed to be equally spaced along the x-axis.
The points, P, , are then also equally spaced on the cone surface. To retain
as much generality as is possible, it is assumed that at t = O, all gust
doublets start emitting. Then, at a time At 1later, another set of gust
doublets at the points Sn start emitting. This set has ty = t, = Ot .
This procedure is then repeated with tz = 246t , etc. Thus, the coefficient
Apn is associated with a gust doublet located at &, which starts emitting
at t, and whose Mach line passes through the point P, on the surface. If
there are N values of § and P , such that Py is located at x = 1,
r = R' , then,
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[l

-1 n-1
P = —— — R? .
n <-1 ’ N-1 (D-1)

-1
£, =§__I (1-(R') (D.2)
tm = (m-1) At (D.3)
See Fig. 13.
¥ Mach Lines

/ // / /S Py /
/S P

§g-- === - --- ==k

Fig. 13 - Location of Doublet Distributions

The main task now is to solve for the Apn - The boundary condition
can be applied m x n times to yield m x n equations for the coefficients. It
is desirable to develop a relatively simple set of equations, to facilitate
their solutions. For this reason, the points, P, , themselves will be used
as control points. The equation at the point, Pn , will involve only those
Api which have i <n .
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The time at which the boundary condition is to be satisfied must also
be determined. If the time is too large, steady state will already have been
attained. This, in turn, will lead to the relatively useless result that all
Apn are zero except Aj;7 . The other extreme, that of using small times,
leads to a divergence in the series of the Amn .

The scheme presently being used is best explained as follows: ILet
4, be the time lag required for the value of v - R'u at point Py , due to
the potential at €; , to reach 2z per cent of its steady-state value. Like-
wise, &, 1is the time lag associated with the value of v - R'u at Pyl >
due to the potential at E, . The solution for the A 1is obtained by satis-
fying the boundary conditions at the points and times shown in Table II.

TABLE 1II

METHOD OF DETERMINING App

Point Time Amn Solved For
Py ol Ay
Py Ly Ao
[
Py 3 AlS
Py Iy-1 Ay §-1
P2 A+ zl A21
5 &+ 4, L
P, &+ Lo Ayq
B+ by 2 p-1
2 2ht + 4y Az
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The method described above has been programmed and the program has
been debugged. Only a few preliminary results have been obtained. Table III
shows the Apn for a cone of unit length, slope = 0,15, at Mach number 2. The
values N =5 and 2 = 80 were used here, and the value of UMt was 0.2.
The linearized 1lift coefficient is shown in Fig. 14.

The numerical solution appears to have the oscillatory characteristics
of a Fourier series. If more terms are used, higher frequency oscillations can
be expected. It is felt that more work is required before definitive results
and conclusions can be given regarding this technique.

TABLE III

Amn VALUES
m Ay /(vo/U) App/(vo/U) An3/(vo/U) s/ (vo/U)
1 0.3C656 - 0.00070 0.00003 - 0,00001
2 - 0.07426 - 0.17868 - 0.16574 0.02811
3 0.01799 0.26746 0.41781 0.65727
4 - 0.00436 - 0.12055 ' - 0.46862 - 1.03315
5 0.00106 0.04312 0.33331 0.66150
6 - 0.00026 - 0.01391 - 0.16724 ~ 0.53563
7 0.C0006 0.00424 0.C63869 0.34352
8 -~ 0.00001 - 0.00124 - 0.02599 - 0.17766
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Fig. 14 - Lift Coefficient, Numerical

- 76 -



APPENDIX E

THE NONLINEAR PRESSURE COEFFICIENT AND REILATED COEFFICIENTS

The pressure coefficient used in Sections VII and VIII is linearized.
When working with the linearized potential theory for axially symmetric bodies,
it is often necessary to consider the effect of the nonlinear or quadratic terms
in the pressure coefficient, in order to obtain more accurate results. This
Appendix includes a derivation of these additional terms, and a few numerical
results obtained with them.

. The exact pressure coefficient for steady flow may be written as [27]

X
Cp = -2 E+1:EMQG-E-2-)JY'1 -1 (E.1)
W . v

where u is the true velocity vector. This vector has the components

[«
1]
(e
[}
K4

provided the x-axis is parallel to the upstream velocity. If the expression
in square brackets in (E.1l) is expanded in a power series, one obtains

1f 2 1 2 22
= —— 2U¢ - -
Co 2 1U§x 8 > g * B2 (E.3)
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where terms of order higher than 2 in the derivatives of & have been neg-
lected. For the non-steady case, we must add the term

2_. 3, . (B.4)

o

Now, the potential function, 3% , given here is the complete pertur-
bation potential and includes the function ¥ given in Section III, the gust
potential, the axial flow potential, and a steady crossflow potential, if any.
The latter will be dropped from consideration in what follows since it can be
looked on as a special case of the gust potential. Thus, we can write

=g, + ¢g cos 8 + ¢ cos 6 (E.5)
where all 6-dependence is shown explicitly, and
¥ =¢cos 0 .

The subscripts & and g indicate axial and gust, respectively. A term such
as ¢ar will indicate the derivative of ¢ with respect to r . (E.3) and
(E.4) can now be combined to yield, using (E 5),

Cp 2U¢ax + 2U¢gx cos 6 + 2¢gt cos 6

1
v

2 2
- ¢ar - (¢gr+¢r) cos® @ - 2¢ (¢ +Vr cos €

33 (¢g+¢)2 sin® 6 + ﬁ2¢§x

r

+

2.2 2 2
B ¢gx cos © +2p ¢ax¢gx cos 6 . (E.6)
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The end result which is desired here is not the pressure coefficient
itself, but rather the generalized force coefficient,

1 27 oL
Cp. = = f CP sz cos © dx do (E.7)
L st*Jdo  Jo

Due to the integration on & , the only portions of (E.6) which have a non-zero

contribution to (E.7) are those terms involving cos 6 . Defining that part,
then, as C§ , yields

G = BB (0 + By - ) * Pl | (£-8)

Inserting (E.8) into (E.7) gives

ch = a%gzz J[(¢gt+u¢éx) x*R(x) dax

- f¢ar Far x% R(x) ax + vo‘/\gjar x4 R(x) ax

+

2 f B, By XPRG) axp (8.9)

The first line of (E.9) is the linear portion which has already been dealt
with. The second line contains the quadratic terms which are due to radial
derivatives. The third line, which is normally neglected compared to the
second line, involves the axial nonlinear terms.

The remaining task, then, is to insert the Eqs. (A.4), (A.5), (8.10),
(8.11), (8.12), (8.14), (8.15), and (8.16) into Eq. (E.9) and perform the re-
quired integrations. It seems best to evaluate these integrals in the same
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fashion as was done in Section VIII, that is, as indefinite integrals .*
However, some of the terms do not seem to be integrable in closed form, if the
most general form for the integrand is used. If this is indeed the case, re-
course may be had to numerical techniques.

For purposes of estimating the importance of these nonlinear terms,
the case of a conical body may be considered. Here, we have g =0 and only
one term is required for the axial flow portion of the potential. It is also
sufficient to consider only one term of the gust potential, namely, that term
with ¢, = t, = 0 « The integrals can be evaluated in this case. Line 2 of
(E.9) gives, in Region B,

&Cy, = B———YEJ:]; Ag® cosh-l %l) + A l\’ -2 - 2mv 32(-2- (E.10)
]

while line 3 yields

2.2
mL = - ‘LAM l_ COSh-l(%) . (E.ll)

* The limits of integration to be used are slightly more involved than those
given in Table I. The location of the Mach line emanating from g (axial
flow source distribution origin) relative to the other regions must be con-
sidered. In addition, the second integrand in line 2 of (E.9) actually in-
volves the unit step function, H(Ut-x), which will, in some cases, alter
the integration.



For Regions C and D, line 2,

aB\1-¢ PUE(LR'2)- (1- ¥7) [x(1+R 2) 0t (1-2R 1 2)] T

oC =
L ssU° R'2(1+R'2)2
e ) S1o . 2UPtR(2x-Ut)
+ inh~1 Z
m2p CamNz

+

2 [ o 2 ot (2)e 2, N

Ve

2 108 ((Mll)['\l—)\c; 3 (x-Ut ﬂ)]

(E.12)

R ~rsz0x2 \’ 1- YE
U2

S
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and for line 3,

Ly,

1
_ ABP coshd(?{) TV
25U°

, MR'2PE(R 2 2)

.=l 5
nh ~ Z
2(1+R'2)5[2 -

+

1 2512 2
- 3PteR" (x(l-R' )_1@
2(148'2)°NZ [

x(14R'2)2 (R'2x2+4Utx-4Ut2)

+

+

Ut (14R "2 ) (R ' 2x2-2Utx+2U°t 2 ﬂ

+ —ﬂ—— [— Ut(2+8R'2+3Y2)

2\2
2(14R'7)

x(l+R'2)(2-y2)]} .

+

- 82 -

(E.13)



In Eqs. (E.10) and (E.13) the following special abbreviations were used:

o 2
A= o/ P (E.14)

cosh™t (.J{*{) + l-"‘_ef;._/ﬁ.z W

B = —U 5 (E.15)
cosh-1 (..]‘;>+.5?_ l'Y2

7 = (x-Ut)2 + R'C »2 (E.16)
2
7-XUttRx (E.17)

R'Ut

The moment and bending coefficients can also be found, although the lift coef-
ficient is sufficient for the purpose of ascertaining the effect of the non-
linear terms.

The steady-state solutions are shown in Figs. 15 and 16. It is clear
that, to obtain accurate results, the nonlinear terms must be included in the
expressions for force coefficients. The curves labeled nonlinear contain all
three lines of Eq. (E.9). The third line, which is often neglected in compari-
son to the second line, is important unless the Mach number is close to one.
The nonlinear terms are more important for blunter cones, as is to be expected.

A cursory examination of the exact solutions of the nonlinear steady
fluid flow equations for yawed cones indicates that the inclusion of the quad-
ratic terms gives a slight overestimate of the lift coefficient. More detailed
comparisons should be made to facilitate estimates of accuracy and applicability
of this theory.
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Bq. (B.9)
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Rl

Fig. 15 - Steady-State Lift Coefficient for M = 1.5 (Nonlinear)

2.0 —_—
1.5h T ~~Nonlinear
Lines 1 and 2 of
N L
. Jiep 10 Eq. (E.9)
Linear
0.5
0 1 1 1 i 1
0 0.1 0.2 003 004 0.5

Rl

Fig. 16 - Steady-State Lift Coefficient for M = 2.0 (Nonlinear)
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Figure 17 shows the effect of the nonlinear terms on the growth of
1lift for a cone of unit length. The initial rate of growth is decreased some-
what, although it is still greater than that of Miles. The "knee" at Ut =1
is due to the step function occurring in the second term of line 2. It is re-
called that this term arose from the potential VY given in Section III.

The nonlinear terms do not affect the growth of 1lift as much as they
affect the final steady-state value of the lift coefficient. It might be use-
ful, as an approximation, to use the linear growth of 1lift curve, but modified
in magnitude to give the nonlinear steady value. The linear curve is much
easier to evaluate than the nonlinear.
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Fig. 17 - Growth of Lift for M = 2.0 , R' = 0.15 (Nonlinear)
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